首页> 外文OA文献 >A genuinely multi-dimensional upwind cell-vertex scheme for the Euler equations
【2h】

A genuinely multi-dimensional upwind cell-vertex scheme for the Euler equations

机译:欧拉方程的真正多维逆风单元-顶点方案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The solution of the two-dimensional Euler equations is based on the two-dimensional linear convection equation and the Euler-equation decomposition developed by Hirsch et al. The scheme is genuinely two-dimensional. At each iteration, the data are locally decomposed into four variables, allowing convection in appropriate directions. This is done via a cell-vertex scheme with a downwind-weighted distribution step. The scheme is conservative, and third-order accurate in space. The derivation and stability analysis of the scheme for the convection equation, and the derivation of the extension to the Euler equations are given. Preconditioning techniques based on local values of the convection speeds are discussed. The scheme for the Euler equations is applied to two channel-flow problems. It is shown to converge rapidly to a solution that agrees well with that of a third-order upwind solver.
机译:二维Euler方程的解基于二维线性对流方程和Hirsch等人开发的Euler方程分解。该方案真正是二维的。每次迭代时,数据都会局部分解为四个变量,从而可以在适当的方向上进行对流。这通过具有顺风加权分布步骤的单元顶点方案来完成。该方案是保守的,并且在空间上是三阶精确的。给出了对流方程方案的推导和稳定性分析,以及对欧拉方程扩展的推导。讨论了基于对流速度局部值的预处理技术。欧拉方程的方案适用于两个通道流动问题。它被证明可以迅速收敛到一个与三阶迎风求解器非常吻合的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号